September 17, 2001	QUIZ \#1	CHEM 101

1) Fill in the blanks to balance the following equations:

2) Name the following compounds
a) $\mathrm{CaCl}_{2} \quad \underline{\text { calcium chloride }}$
b) $\mathrm{CuBr}_{2} \ldots$ copper(II) bromide
c) $\mathrm{N}_{2} \mathrm{~F}_{4} \xrightarrow{\text { dinitrogen tetrafluoride }}$
3) Mandelic acid is an organic acid composed of carbon (63.15\%), hydrogen (5.30\%), and oxygen (31.55\%) by mass.
a) What is the empirical formula for this compound? Assume $\mathbf{1 0 0} \mathrm{g}$
$\mathrm{C}:(63.15 \mathrm{~g} \mathrm{C}) \times(1 \mathrm{~mol} \mathrm{C} / 12.011 \mathrm{~g} \mathrm{C})=5.258 \mathrm{~mol} \mathrm{C} \quad \rightarrow 5.258 / 1.972=2.666=8 / 3$
$\mathrm{H}:(5.30 \mathrm{~g} \mathrm{H}) \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=5.26 \mathrm{~mol} \mathrm{H} \quad \rightarrow \mathbf{5 . 2 6} / 1.972=2.667=8 / 3$
$O:(31.55 \mathrm{~g} \mathrm{O}) \times(1 \mathrm{~mol} \mathrm{O} / 15.999 \mathrm{~g} \mathrm{O})=1.972 \mathrm{~mol} \mathrm{O} \quad \rightarrow 1.972 / 1.972=1.000=1$
$\mathrm{C}_{8 / 3} \mathrm{H}_{8 / 3} \mathrm{O} \rightarrow$ need whole numbers so mulitply by $\mathbf{3} \rightarrow \underline{\mathrm{C}}_{8} \underline{\mathrm{H}}_{8} \underline{\mathrm{O}_{3}}$
b) If the molar mass of the compound is $152.14 \mathrm{~g} / \mathrm{mol}$ what is the molecular formula of the acid?
Using empirical formula molar mass of $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}=(8 \times 12.011 \mathrm{~g} / \mathrm{mol})+(8 \times 1.008 \mathrm{~g} / \mathrm{mol})$
$+(3 \times 15.999 \mathrm{~g} / \mathrm{mol})=152.15 \mathrm{~g} / \mathrm{mol}$
Molar mass/Emprical molar mass $=152.14 / 152.15=0.99993=1$
Molecular formula is same as empirical formula, $\underline{\mathrm{C}}_{\underline{8}} \underline{H}_{8} \underline{\mathrm{O}_{3}}$
4) Ammonia gas can be prepared by the reaction of a metal oxide such as calcium oxide with ammonium chloride by the reaction shown below.

$$
\mathrm{CaO}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}
$$

A reaction takes palce between 112 g of CaO and 224 g of $\mathrm{NH}_{4} \mathrm{Cl}$ and goes to completion.
a) What is the limiting reagent (circle one shown to the right):
$\underline{\mathrm{CaO}}$
$\mathrm{NH}_{4} \mathrm{Cl}$

SHOW WORK!!
CaO: $112 \mathrm{~g} \mathrm{CaO} \times[1 \mathrm{~mol} /(40.078 \mathrm{~g}+15.999 \mathrm{~g})]=2.00 \mathrm{~mol} \mathrm{CaO}$
$\mathrm{NH}_{4} \mathrm{Cl}: 224 \mathrm{~g} \mathrm{NH} 4 \mathrm{Cl} \times\{1 \mathrm{~mol} /[14.007 \mathrm{~g}+4(1.008 \mathrm{~g})+35.453 \mathrm{~g}]\}=4.19 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}$
Need $2.00 \mathrm{~mol} \mathrm{CaO} \times\left(2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl} / 1 \mathrm{~mol} \mathrm{CaO}\right)=4.00 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl} \rightarrow$ Have that much Need $4.19 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl} \times\left(1 \mathrm{~mol} \mathrm{CaO} / 2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}\right)=2.10 \mathrm{~mol} \mathrm{CaO} \rightarrow$ Do not have that much Thus, $\mathbf{C a O}$ is limiting reagent
b) Calculate the maximum yield of NH_{3}.
$2.00 \mathrm{~mol} \mathrm{CaO} \times\left(2 \mathrm{~mol} \mathrm{NH}_{3} / 1 \mathrm{~mol} \mathrm{CaO}\right)=4.00 \mathrm{~mol} \mathrm{NH}_{3}$
$4.00 \mathrm{~mol} \mathrm{NH}_{3} \times\left\{\left[14.007 \mathrm{~g}+3(1.008 \mathrm{~g}) / 1 \mathrm{~mol} \mathrm{NH}_{3}\right\}=\underline{\mathbf{6 8 . 1} \mathrm{g} \mathrm{NH}_{3}}\right.$

| September 17, 2001 | QUIZ \#1 |
| :--- | :--- | CHEM 101

1) Fill in the blanks to balance the following equations:

2) Name the following compounds:
a) MgBr_{2} magesium bromide
a) FeCl_{3} _iron(III) chloride
c) $\mathrm{N}_{2} \mathrm{H}_{4}$ ___dinitrogen tetrahydride \qquad
3) Salicylic acid, or aspirin, is $60.87 \% \mathrm{C}, 4.38 \% \mathrm{H}$, and $34.65 \% \mathrm{O}$ by mass.
a) What is the empirical formula for this compound? Assume $\mathbf{1 0 0} \mathbf{g}$
$\mathrm{C}:(60.87 \mathrm{~g} \mathrm{C}) \times(1 \mathrm{~mol} \mathrm{C} / 12.011 \mathrm{~g} \mathrm{C})=\mathbf{5 . 0 6 8} \mathrm{mol} \mathrm{C} \quad \rightarrow \mathbf{5 . 0 6 8} / \mathbf{2} .166=2.340=7 / 3$
$\mathrm{H}:(4.38 \mathrm{~g} \mathrm{H}) \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=4.35 \mathrm{~mol} \mathrm{H} \quad \rightarrow 4.35 / 2.166=2.01=2$
O: $(34.65 \mathrm{~g} \mathrm{~N}) \times(1 \mathrm{~mol} \mathrm{O} / 15.999 \mathrm{~g} \mathrm{O})=2.166 \mathrm{~mol} \mathrm{O} \quad \rightarrow 2.474 / 2.166=1.000=1$
$\mathrm{C}_{7 / 3} \mathrm{H}_{2} \mathrm{O} \rightarrow$ need whole numbers so mulitply by $3 \rightarrow \underline{\mathrm{C}}_{7} \underline{H}_{6} \underline{\mathrm{O}}_{3}$
b) If the molar mass of the compound is $138.12 \mathrm{~g} / \mathrm{mol}$ what is the molecular formula of the compound?
Using empirical formula molar mass of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}=(7 \times 12.011 \mathrm{~g} / \mathrm{mol})+(6 \times 1.008 \mathrm{~g} / \mathrm{mol})$ $+(3 \times 15.999 \mathrm{~g} / \mathrm{mol})=138.12 \mathrm{~g} / \mathrm{mol}$
Molar mass/Emprical molar mass $=138.12 / 138.12=1.000=1$
Molecular formula is same as empirical formula, $\underline{C}_{7} \underline{H}_{6} \underline{O_{3}}$
4) Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, is a valuable compound in the synthesis of new organic compounds. One way this compound can be made is by the reaction shown below.

$$
2 \mathrm{NaBH}_{4}+\mathrm{I}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{H}_{6}+2 \mathrm{NaI}+\mathrm{H}_{2}
$$

A reaction takes place between 1.23 g of NaBH_{4} and 4.57 g of I_{2} and goes to completion.
a) What is the limiting reagent (circle one shown to the right): ${\underline{\mathbf{N a B H}_{4}}}_{\underline{4}}$

SHOW WORK!!
$\mathrm{NaBH}_{4}: 1.23 \mathrm{~g} \mathrm{NaBH} 4 \times\{1 \mathrm{~mol} /[22.990 \mathrm{~g}+10.811 \mathrm{~g}+4(1.008 \mathrm{~g})]\}=0.0325 \mathrm{~mol} \mathrm{NaBH}_{4}$
$\mathrm{I}_{2}: 4.57 \mathrm{~g} \mathrm{I}_{\mathbf{2}} \times[1 \mathrm{~mol} /(2 \times 126.904)]=0.0180 \mathrm{~mol} \mathrm{I}_{2}$
Need $0.0325 \mathrm{NaBH}_{4} \times\left(1 \mathrm{~mol}_{2} / 2 \mathrm{~mol} \mathrm{NaBH}_{4}\right)=0.0163 \mathrm{~mol} \mathrm{I}_{2} \rightarrow$ Have that much
Need $0.0180 \mathrm{~mol} \mathrm{I}_{\mathbf{2}} \times\left(\mathbf{2} \mathbf{~ m o l ~ N a B H} 4 \mathbf{I}_{2}\right)=\mathbf{0 . 0 3 6 0} \mathrm{mol} \mathrm{NaBH}_{4} \rightarrow$ Do not have that much Thus, $\underline{\mathrm{NaBH}}_{4}$ is limiting reagent
b) Calculate the maximum yield of $\mathrm{B}_{2} \mathrm{H}_{6}$. $0.0325 \mathrm{~mol} \mathrm{NaBH}_{4} \times\left(\mathbf{1 ~ m o l ~ B} \mathbf{2} \mathrm{H}_{6} / 2 \mathrm{~mol} \mathrm{NaBH}_{4}\right)=0.0163 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}$
$0.0163 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6} \times\left\{[(2 \times 10.811 \mathrm{~g})+(6 \times 1.008 \mathrm{~g})] / 1 \mathrm{~mol}_{\mathbf{2}} \mathrm{H}_{\mathbf{6}}\right\}=\underline{0.451 \mathrm{~g} \mathrm{~B}} \mathbf{B}_{2} \underline{\mathrm{H}}_{\underline{6}}$

