NA	AME:		Form I (blue)
	September 17, 2001	QUIZ #1	CHEM 101

1) Fill in the blanks to balance the following equations:

$$\underline{2}$$
 FeTiO₃ + $\underline{2}$ Cl₂ + \underline{C} \rightarrow $\underline{2}$ FeCl₂ + $\underline{2}$ TiO₂ + \underline{C} CO₂

2) Name the following compounds

- a) CaCl₂ <u>calcium chloride</u>
- b) CuBr₂ <u>copper(II) bromide</u>
- c) N₂F₄ <u>dinitrogen tetrafluoride</u>
- 3) Mandelic acid is an organic acid composed of carbon (63.15%), hydrogen (5.30%), and oxygen (31.55%) by mass.
 - a) What is the empirical formula for this compound? Assume 100 g

C: $(63.15 \text{ g C}) \times (1 \text{ mol C}/12.011 \text{ g C}) = 5.258 \text{ mol C}$ $\Rightarrow 5.258/1.972 = 2.666 = 8/3$ H: $(5.30 \text{ g H}) \times (1 \text{ mol H}/1.008 \text{ g H}) = 5.26 \text{ mol H}$ $\Rightarrow 5.26/1.972 = 2.667 = 8/3$

O: $(31.55 \text{ g O}) \times (1 \text{ mol O}/15.999 \text{ g O}) = 1.972 \text{ mol O}$ $\rightarrow 1.972/1.972 = 1.000 = 1$

$C_{8/3}H_{8/3}O \rightarrow \text{need whole numbers so mulitply by } 3 \rightarrow \underline{C_8H_8O_3}$

b) If the molar mass of the compound is 152.14 g/mol what is the molecular formula of the acid?

Using empirical formula molar mass of $C_8H_8O_3$ = (8 x 12.011 g/mol) + (8 x 1.008 g/mol) + (3 x 15.999 g/mol) = 152.15 g/mol

Molar mass/Emprical molar mass = 152.14/152.15 = 0.99993 = 1

Molecular formula is same as empirical formula, <u>C₈H₈O₃</u>

4) Ammonia gas can be prepared by the reaction of a metal oxide such as calcium oxide with ammonium chloride by the reaction shown below.

$$CaO + 2NH_4Cl \rightarrow 2NH_3 + H_2O + CaCl_2$$

A reaction takes palce between 112 g of CaO and 224 g of NH₄Cl and goes to completion.

a) What is the limiting reagent (circle one shown to the right):

<u>CaO</u>

NH₄Cl

SHOW WORK!!

CaO: 112 g CaO x [1 mol/(40.078 g + 15.999 g)] = 2.00 mol CaO

 $NH_4Cl: 224 \text{ g } NH_4Cl \text{ x } \{1 \text{ mol}/[14.007 \text{ g} + 4(1.008 \text{ g}) + 35.453 \text{ g}]\} = 4.19 \text{ mol } NH_4Cl$

Need 2.00 mol CaO x (2 mol NH₄Cl/1 mol CaO) = 4.00 mol NH₄Cl → Have that much

Need 4.19 mol NH₄Cl x (1 mol CaO/2 mol NH₄Cl) = 2.10 mol CaO \Rightarrow Do not have that much Thus, CaO is limiting reagent

b) Calculate the maximum yield of NH_3 .

2.00 mol CaO x (2 mol NH $_3$ /1 mol CaO) = 4.00 mol NH $_3$

4.00 mol NH₃ x {[14.007 g + 3(1.008 g)/1 mol NH₃} = $\underline{68.1 \text{ g NH}_3}$

	NAME:	Form 2 (green)		
	September 17, 2001 QUIZ #1	CHEM 101		
1)	Fill in the blanks to balance the following equations:			
2)	$\underline{2}$ _FeTiO ₃ + $\underline{2}$ _Cl ₂ + \underline{C} \rightarrow $\underline{2}$ _FeCl ₂ + $\underline{2}$ _TiO ₂ + \underline{C} O ₂ Name the following compounds: a) MgBr ₂ $\underline{\underline{magesium\ bromide}}$			
	a) FeCl ₃ <u>iron(III) chloride</u>	_		
3)	c) N ₂ H ₄ dinitrogen tetrahydromath distribution of the compound of th	5% O by mass. ume 100 g → 5.068/2.166 = 2.340 = 7/3 → 4.35/2.166 = 2.01 = 2		
	 C_{7/3}H₂O → need whole numbers so mulitply by 3 → C₇H₆O₃ b) If the molar mass of the compound is 138.12 g/mol what is the molecular formula of the compound? Using empirical formula molar mass of C₇H₆O₃ = (7 x 12.011 g/mol) + (6 x 1.008 g/mol) + (3 x 15.999 g/mol) = 138.12 g/mol Molar mass/Emprical molar mass = 138.12/138.12 = 1.000 = 1 			
	Molecular formula is same as empirical formula, $\underline{C_7}\underline{H_6}\underline{O_3}$			
3)	Diborane, B ₂ H ₆ , is a valuable compound in the synthesis of new organic compounds. One way this compound can be made is by the reaction shown below.			
$2NaBH_4 + I_2 \rightarrow B_2H_6 + 2NaI + H_2$				
	A reaction takes place between 1.23 g of NaBH ₄ and 4.57 a) What is the limiting reagent (circle one shown to the r SHOW WORK!! NaBH ₄ : 1.23 g NaBH ₄ x {1 mol/[22.990 g + 10.811 g + 4 I ₂ : 4.57 g I ₂ x [1 mol/(2 x 126.904)]= 0.0180 mol I ₂ Need 0.0325 NaBH ₄ x (1 mol I ₂ /2 mol NaBH ₄) = 0.0163 Need 0.0180 mol I ₂ x (2 mol NaBH ₄ /2 I ₂) = 0.0360 mol NaBH ₄ is limiting reagent b) Calculate the maximum yield of B ₂ H ₆ .	right): NaBH ₄ I ₂ $(1.008 g)]} = 0.0325 mol NaBH4$ mol I ₂ → Have that much		
	0.0325 mol NaBH ₄ x (1 mol B ₂ H ₆ /2 mol NaBH ₄) = 0.0163 mol B ₂ H ₆			

 $0.0163 \ mol \ B_2H_6 \ x \ \{[(2 \ x \ 10.811 \ g) + (6 \ x \ 1.008 \ g)]/1 \ mol \ B_2H_6\} = \underline{0.451 \ g \ B_2H_6}$