Name	Date	Sect
Cell 1		
Cathode half-reaction	Anode half-reaction	Overall chemical reaction

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with the calculated value (i.e. % error)?

Cell 2

Cathode half-reaction	Anode half-reaction	Overall chemical reaction

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with the calculated value?

Cell 3

Cathode half-reaction	Anode half-reaction	Overall chemical reaction

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with the calculated value?

Name	Date	Sect
Cell 4		
Cathode half-reaction	Anode half-reaction	Overall chemical reaction

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with the calculated value?

Experiment 22-026 Investigation of Galvanic Cells

Cell 5

List the reduction half-reaction involved in this concentration cell, along with the ϵ° values.

reduction half-reaction ϵ°

Write the half-reaction occurring at the cathode (include concentration):

Write the half-reaction occurring at the anode(include concentration):

Net chemical reaction involved in the cell(include concentrations):

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with calculated value?

Name	Date	Sect
Cell 6		

List the reduction half-reaction involved in this concentration cell, along with the ϵ° values.

reduction half-reaction ϵ°

Write the half-reaction occurring at the cathode(include concentration):

Write the half-reaction occurring at the anode(include concentration):

Net chemical reaction involved in the cell(include concentrations):

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with calculated value?

Experiment 22-026 Investigation of Galvanic Cells

Cell 7

List the reduction half-reaction involved in this concentration cell, along with the ϵ° values.

reduction half-reaction ϵ°

Write the half-reaction occurring at the cathode(include concentration):

Write the half-reaction occurring at the anode(include concentration):

Net chemical reaction involved in the cell(include concentrations):

Predicted potential for cell reaction (using Nernst equation)

How does your experimental potential compare with calculated value?

Name	Date	Sect
Cell 8		
List the reduction half-reac	tion involved in this cell, along	g with the ε° values.
reduction ha	lf-reaction	ε°
Write the half-reaction occu	urring at the cathode(include co	oncentration):
Write the half-reaction occu	urring at the anode(include cor	ncentration):

Net chemical reaction involved in the cell(include concentrations):

Reduction Potential for the observed reaction

Using the Nernst equation, determine the value for the K_{sp} for AgCl

How does calculated K_{sp} value compare with the textbook value?

For cell 8, suppose that your observed voltage was 10% higher than the value you actually observed. What change would that make in the calculated value of the K_{sp} ? Determine the absolute change as well as the percent (%) change.

Experiment 22-026 Investigation of Galvanic Cells

Cell 9

List the reduction half-reaction involved in this cell, along with the ε° values.

reduction half-reaction ϵ°

Write the half-reaction occurring at the cathode:

Write the half-reaction occurring at the anode:

Net chemical reaction involved in the cell:

Nernst equation for this electrochemical cell

Using the Nernst equation, determine the free $[Cu^{2+}]$ in solution A:

Determine K_{form} from [Cu(NH₃)₄²⁺], [Cu²⁺], and [NH₃].

Name	Date	Sect

Cell 10

Describe the galvanic cell you constructed to determine the *standard potential* for the reaction:

 $Zn_{(s)} + 2 \operatorname{Ag}^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2 \operatorname{Ag}_{(s)}$

Showing your work, use *your* experimental data to determine the *standard potential* for this reaction, and compare it to the value obtained by using the table of *Standard Reduction Potentials*.