Results and Calculations:

Draw standard curve and use Beer's law to determine concentration of ASA in your aspirin sample.

For Standard Curve: x-axis \Rightarrow concentration ASA (M) y-axis \Rightarrow absorbance (no units) at λ_{max} nm

e.g. A 0.0252 g sample of ASA was dissolved in base and brought to volume in a 25.0 mL Concentration of ASA:

 $\frac{0.0252 gASA}{180.16 \frac{g}{mole}} = 1.399 x 10^{-4} moleASA$ $\frac{1.399 x 10^{-4} moleASA}{0.0250 L} = 0.005595M$

For standard series:

 $(0.005595 \text{ M})(0.00025 \text{ L}) = (\mathbf{x})(0.0100 \text{ L})$ $\mathbf{x} = 1.399 \text{ x } 10^{-4} \text{ M}$

Table 1: Standard ASA curve data.

Volume ASA (mL)	Concentration ASA (M)	Absorbance @ 528.0 nm
0.00	0.000	0.000
0.25	1.399 x 10 ⁻⁴	0.186
0.50	2.798 x 10 ⁻⁴	0.374
0.75	4.196 x 10 ⁻⁴	0.616
1.00	5.595 x 10 ⁻⁴	0.818

Figure 1: Standard Acetylsalicylic Acid Curve

Use standard curve to determine ε and use Beer's law to solve for concentration of ASA in your sample.

From Standard Curve:

$$\varepsilon = 1442.7 \text{ cm}^{-1}\text{M}^{-1}$$

Beer's law: $A = \mathcal{E}lc \Rightarrow c = \frac{A}{\mathcal{E}l}$, l = 1.00 cm for this experiment

Table 2: Absorbance Data for Bayer aspirin tablet:

Absorbance of Aspirin sample @ 528.0 nm	Concentration of aspirin sample in cuvette
	(M)
0.552	3.823 x 10 ⁻⁴
0.533	3.691 x 10 ⁻⁴
0.530	3.670 x 10 ⁻⁴
0.540	3.743 x 10 ⁻⁴

Mean Concentration of Aspirin sample: $3.732 \times 10^{-4} \text{ M}$ Standard Deviation: $6.777 \times 10^{-6} \text{ M}$ (see p. 21 of lab manual)

Calculation of concentration in your aspirin sample: Remember Dilutions

- 1. Diluted 0.50 mL to 10.0 mL $\Rightarrow \frac{10.0}{0.50} = 20$ so $(3.732 \times 10^{-4} \text{ M})(20) = 7.464 \times 10^{-3} \text{ M}$
- 2. Total moles in 250 mL solution: (7.464 x 10^{-3} mole/L)(0.250 L) = 1.866 x 10^{-3} mole
- 3. Total grams (g) of acetylsalicylic acid in sample: (1.866 x 10⁻³ mole)(180.16 g/mole) = 0.3362 g ASA
- 4. Total mg ASA: (0.3362 g)(1000 mg/g) = 336.2 mg ASA